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1. Introduction

The closest model so far to a holographic description of large Nc QCD is the Sakai-Sugimoto

model [1]. The U(Nc) gauge sector is described, at low energy, by the near-horizon limit

of Nc D4-branes wrapped on a Scherk-Schwarz circle [2]. This description is valid at

energies well below the Kaluza-Klein scale of the circle. The quark sector is incorporated

by including Nf D8-branes and Nf anti-D8-branes transverse to the circle. The strings that

stretch between the original D4-branes and the D8-branes (anti-D8-branes) describe right-

handed (left-handed) chiral fermions, which transform in the fundamental representation

of both the U(Nc) color group and the U(Nf )R (U(Nf )L) flavor group. It is assumed that

Nf ≪ Nc, so that the D8-branes can be treated as probes in the D4-brane background, and

one can ignore their backreaction. In QCD this corresponds to the quenched approximation.

The Sakai-Sugimoto model shares many features with other holographic models of gauge

theory with matter, however the novel feature of this model is the geometrical realization of

spontaneous flavor chiral symmetry breaking. The 8-branes and anti-8-branes are separated

along the circle asymptotically in the radial coordinate, but are connected at some minimal

radial position (figure 1). The former corresponds in QCD to the UV flavor symmetry being

– 1 –



J
H
E
P
1
2
(
2
0
0
7
)
0
3
7

x4

u

uKK

L

a

uKK

u0

L

b

Figure 1: The 8-brane-anti-8-brane configuration in the compact non-extremal 4-brane back-

ground. (a) The anti-podal case. (b) The general case.

U(Nf )R × U(Nf )L, and the latter corresponds to the IR symmetry being the diagonal

subgroup U(Nf )V .

In spite of its success, there are several open questions about the model, some of which

are related to very basic notions of gauge dynamics. The first is the incorporation of

a QCD, or “current algebra” quark mass. The quarks are massless in this model since

the 8-branes necessarily intersect the 4-branes. This is also manifested in the fact that

the modes identified with the pions are massless. It is well known that pions obey the

Gell-Mann-Oakes-Renner relation [3]

M2
π =

2mq〈q̄q〉
f2

π

+ O(m2
q) . (1.1)

Therefore in a non-trivial quark condensate massless pions imply massless quarks. In

the original construction of [1] the 8-branes and anti-8-branes were located at antipodal

points on the circle, and they connected at the minimal radial position of the background

uKK. This was extended in [4 – 6] to a family of configurations parameterized by the

asymptotic separation L, or equivalently by the minimal radial position of the 8-branes

u0 (see figure 1(b)). In these configurations there is a natural mass parameter associated

with the “length” of a string stretched from the minimal radial position of the background

uKK to the minimal radial position of the 8-branes u0. However, it is easy to check that

the pions remain massless, so this parameter cannot be identified with the current algebra

mass. It is instead related to the “constitutent quark mass”. Indeed in [6] for the model

of [1], and in [4] for analogous non-critical models, it was found that the masses of the

vector mesons are linearly related to this “length of the string” mass parameter. Moreover,

a model of the decay process of spinning stringy mesons [7] supports the interpretation of

the “length” as the constituent mass.

A related question has to do with the quark condensate itself: how does one compute

it in the holographic description?1 The answers to both questions are related to each other.

1In [8] both the current algebra mass of the quarks and the condensate can be read from the profile of

the flavor branes, and the GOR relation of (1.1) is obeyed. However that model suffers from the drawback

that it does not incorporate chiral flavor symmetry.
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The quark mass term in QCD is

mq q̄q = mq (q†RqL + q†LqR) , (1.2)

where mq is an Nf ×Nf matrix, qR is a fundamental of U(Nf )R, and qL is a fundamental

of U(Nf )L. Both the mass and the quark bi-linear should therefore be identified with a bi-

fundamental field in the bulk.2 In this model the required bi-fundamental field comes from

the D8-D8 strings.3 The dual operator is therefore non-local in the coordinate transverse

to the 8-branes. According to the usual holographic dictionary the normalizable mode of

this field should correspond to the expectation value of the quark bi-linear, i.e. to the

quark condensate, and the non-normalizable mode should correspond to the quark mass.

The bi-fundamental field was not included in the analysis of [1], since, as was argued

there, it is very massive. The 8-brane-anti-8-brane separation was assumed to be much

greater than the string length, which in flat space would make this field massive. However

the proper distance between the 8-branes and anti-8-branes in the curved background of this

model depends on the radial coordinate u, and decreases as u decreases. The mass of the

bi-fundamental field therefore depends on u as well. For the U-shaped configuration found

in [1] this field remains massive for all u. While the proper distance decreases as u decreases,

the relative angle between the 8-branes and anti-8-branes increases, so that it never becomes

tachyonic. The situation changes in the case of the non-compact background considered

in [11]. In that case uKK = 0, so there are two possible configurations: a connected

U-shaped 8-brane similar to the one of [1], and a disconnected parallel 8-brane-anti-8-

brane configuration. In the parallel configuration the proper distance between the 8-branes

and anti-8-branes goes to zero at u = 0, and therefore the bi-fundamental field becomes

tachyonic in a finite range of u near the origin. This represents a (radially) localized

tachyonic instability, and one expects the true vacuum to be the U-shaped configuration.4

The condensation of this localized tachyon can be seen as a Higgs-like effect which breaks

the chiral symmetry U(Nf )R × U(Nf )L to the diagonal group U(Nf )V .

In either case, the remaining non-tachyonic mode of the bi-fundamental field, which

we will continue to call the “tachyon” T , is crucial for describing the quark mass and

condensate.

In this paper we incorporate the tachyon into the 8-brane action using a proposal of

Garousi for the brane-antibrane effective action [14], which extends Sen’s original proposal

for the non-BPS D-branes [15]. We show that the coupled equations of motion for the

tachyon T and the 8-brane-anti-8-brane separation L admit a solution which describes a

U-shaped configuration. In our solution the tachyon has a non-trivial profile, which for

large u is a linear combination of a normalizable mode and a non-normalizable mode. We

relate the coefficient of the former to the quark condensate 〈q̄q〉, and the coefficient of

2In [9] the quark mass and condensate were identified with the scalar field corresponding to the 8-brane-

anti-8-brane separation. We believe this is incorrect, since this field transforms in the adjoint, rather than

the bi-fundamental, representation of the U(Nf )s.
3The same field appears in the holographic description of the resolution of the U(1)A puzzle [10].
4A similar effects occur in the “hairpin brane” of [12], and in the meta-stable supersymmetry breaking

brane configurations of [13].
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the latter to the quark mass mq. We also show that the pions, which are part of the

meson spectrum, acquire a mass that satisfies the GOR relation (1.1).5 For mq = 0 our

solution describes the same configuration as [1, 11], but it also includes the effect of the

(normalizable mode of the) massive bi-fundamental field. At large u the solutions are the

same, but the precise shape of the 8-brane at finite u changes.

For simplicity we will consider the non-compact case dual to the NJL model [11],

namely the near-horizon background of Nc extremal D4-branes. The metric in this case

does not contain the “thermal factor” f(u) = 1−u3
KK/u3. The behavior near the boundary

at u → ∞ will be similar to the compact case since f(∞) = 1, and therefore our results

for the quark mass and condensate, which are determined by the behavior of T near the

boundary, will be the same. This is also reasonable from the field theory point of view.

While the gauge sector of this model is very different from QCD, and Kaluza-Klein states

do not decouple, the flavor sector, which is where chiral symmetry breaking and quark

masses are seen, is the same. We will also deal only with the one flavor case Nf = 1, for

which the 8-brane theory is Abelian. Note that in this case the would-be broken symmetry

is the anomalous U(1)A. At large Nc, however, the anomaly, and with it the mass of the

would-be Goldstone boson η′, is suppressed [17, 18] (see however [10] for a discussion of

how it is suppressed in this model). The GOR relation (1.1) therefore holds also for the

η′.6

A holographic dual description of the chiral condensate and quark mass in QCD has

been discussed previously in the context of the “bottom-up” AdS/QCD model [20, 21],

which is essentially a five-dimensional U(Nf ) × U(Nf ) Yang-Mills theory in AdS5 with a

bi-fundamental tachyonic scalar field. This was later generalized to a tachyonic DBI + CS

theory in [22].

The outcome of the present paper is a holographic picture where

• The spontaneous breaking of flavor chiral symmetry emerges from a “Higgs mecha-

nism” with an order parameter which is the expectation value of the bi-fundamental

tachyon field.

• The current algebra mass of the quarks is associated with a non-normalizable mode of

the tachyon. The quark anti-quark condensate can be identified with a normalizable

mode of the tachyon.

• The pions of the model obey the GOR relation.

The paper is organized as follows. In section 2 we review the proposal for the Dp-Dp

effective action, and apply it to the D8-D8 system in the near-horizon extremal 4-brane

background. In section 3 we study the asymptotic forms of the solutions for T (u) and L(u),

both at large u and near the point u = u0 where the branes and anti-branes connect. We

5A different approach to the pion mass in this model was discussed in [16].
6There is an alternative large Nc extension of one-flavor QCD, in which the fermions transform in the

anti-symmetric representation of the gauge group [19]. In that model the anomaly is not suppressed, and

the GOR relation is not expected to hold for the η′.
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extract the quark mass and condensate from the behavior of T at large u. In section 4 we

present numerical solutions which interpolate between the two asymptotic solutions, and

compare with the solution without the tachyon of [11]. In section 5 we begin to analyze

the meson spectrum in the tachyon background. This includes both the fluctuations of

the scalar fields T and L, as well as the worldvolume gauge fields on the 8-branes and

anti-8-branes. In particular we show that the mass of the pions satisifies the GOR relation.

2. The D8-D8 theory

A proposal for the effective action of a parallel p-brane-anti-p-brane system in curved

spacetime was given by Garousi in [14]. Denoting by X(n) and A(n) the adjoint (position)

scalar fields and gauge fields on the branes (n = 1) and anti-branes (n = 2), and by T the

complex bi-fundamental scalar field, the action is given by

S = −Tp

∫

dp+1 σ
∑

n=1,2

e−Φ(X(n))V (T )

√

1 +
|T |2|L|2

2πα′

√

−det (G(n) + T (n)) , (2.1)

where L ≡ X(1) − X(2) is the brane-antibrane separation, and

G(n)
ab = P (n)



Gab −
|T |2

2πα′
(

1 + |T |2|L|2

2πα′

)GaiL
iLjGjb



 + 2πα′F
(n)
ab (2.2)

T (n)
ab =

1

1 + |T |2|L|2

2πα′

[

πα′ (DaT (DbT )∗ + DbT (DaT )∗)

+
i

2

(

Gai + ∂aX
(n)jGji

)

Li (T (DbT )∗ − T ∗DbT )

+
i

2
(T (DaT )∗ − T ∗DaT )Li

(

Gib − Gij∂bX
(n)j

)

]

. (2.3)

We use a, b for the worldvolume directions, and i, j for the transvese directions. The

covariant derivative of the bi-fundamental scalar is given by DaT = ∂aT − i(A(1) −A(2))T ,

and V (T ) is the scalar field potential.

This action was obtained by generalizing Sen’s action for a non-BPS 9-brane in Type

IIA string theory [15] as follows. First, the tachyon kinetic term is added under the square

root [23]. Second, the action is extended to two unstable 9-branes by the familiar symmetric

trace prescription for the non-Abelian DBI action. Third, the action is transformed to a

9-brane-anti-9-brane action in Type IIB string theory by projecting with (−1)FL . Finally,

the general p-brane-anti-p-brane action is obtained by T-duality. To separate the branes

and antibranes we turn on a Wilson line in the 9-brane-anti-9-brane model, which fixes

the dependence on L. As a check, note that for L = 0 this reduces to Sen’s action for a

coinciding brane and antibrane [24].

The tachyon potential for the brane-antibrane pair is not known precisely even in flat

space. Boundary superstring field theory gives a potential [25]

V (T ) = e−T 2/4 . (2.4)
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Figure 2: The inverse cosh Tachyon potential.

An alternative proposal for the potential is [26 – 28, 14]

V (T ) =
1

cosh(
√

πT )
. (2.5)

This reproduces, for example, the S-brane solution using the tachyon effective theory [28].

In both proposals (and there may be others) the true vacuum is at T → ±∞, but the

details are different. We will work with the inverse cosh potential (2.5) shown in figure 2.

Let us apply this proposal to the D8-D8 system in the non-compact extremal D4-brane

background. The background is defined by

ds2 =

(

U

R

)
3
2
(

ηµνdxµdxν + (dx4)
2
)

+

(

U

R

)− 3
2
(

(dU)2 + (U)2dΩ2
4

)

, (2.6)

and

eΦ = gs

(

U

R

)
3
4

, (2.7)

where µ, ν = 0, 1, 2, 3, and 0 ≤ U < ∞. We assume that the 8-brane and anti-8-brane

are positioned symmetrically at X
(1)
4 = L/2 and X

(2)
4 = −L/2, respectively, and that the

configuration depends only on the radial coordinate U . It will also be convenient to work

in the unitary gauge in which T is real. Suppressing the gauge fields for now, the action

for the D8-D8 pair in this background becomes

S[T,L] = − 2N
∫

d4xduV (T )u4
√

D[T,L] , (2.8)

where

D[T,L] =
1

u3
+

1

4R2
(L′(u))2 +

2πα′

R2u
3
2

(T ′(u))2 +
1

2πα′u
3
2

(L(u))2(T (u))2 , (2.9)

and where we have defined u ≡ U/R and N ≡ µ8Ω4R
5/gs.
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Note that the proper distance between the 8-brane and anti-8-brane is

Lproper = u3/4L , (2.10)

so even if we keep the brane and antibrane well separated in coordinate distance, the proper

distance will decrease below the string scale for small enough u, and the field T will be

tachyonic in that region. One can see this directly by expanding the action for small T ,

which gives (after properly normalizing to get a canonical kinetic term)

m2
T (u) = − 1

2α′
+

(Lproper(u))2

(2πα′)2
. (2.11)

We recognize the first term as the zero-point energy of the open superstring in the NS

sector in flat space, and the second term as the contribution of the proper length of the

open string. This result is most likely not precise. First, the flat space result for the zero-

point energy probably changes in this background. We do not know how to compute it,

since this is an RR background. Second, the straight string stretched between the 8-brane

and anti-8-brane is not the minimal length (and mass) string, and it actually prefers to

curve down in u [11]. However we believe that the qualitative result is still correct, namely

that m2
T < 0 below some critical u. In other words the field T has a localized tachyonic

mode in a small region near u = 0. This is similar to the tachyon which appears at the

intersection of branes which meet at a small angle. We therefore expect the ground state

to correspond to the connected 8-brane configuration.

2.1 The compact case

In the Sakai-Sugimoto model x4 is compact and the near-horizon metric is given by

ds2 =

(

U

R

)
3
2
(

ηµνdxµdxν + f(U)(dx4)
2
)

+

(

U

R

)− 3
2
(

(dU)2

f(U)
+ U2dΩ2

4

)

, (2.12)

where

f(U) = 1 − U3
KK

U3
, UKK =

4

9

R3

R2
4

. (2.13)

Strictly speaking, the 8-brane and anti-8-brane cannot be treated as separate entities in

this background, since the x4 circle shrinks to zero size at U = UKK. In this case the brane

and anti-brane are necessarily connected, and the D8-D8 action should be viewed as a

large-u effective theory for the worldvolume fields on the two sides of the 8-brane, together

with the massive scalar field coming from the open string stretched between the two sides.

At large U the compact background is essentially identical to the non-compact one, so the

results related to the mass and condensate will be the same. The precise profiles of the

fields T (u) and L(u) at finite u will be different.

– 7 –



J
H
E
P
1
2
(
2
0
0
7
)
0
3
7

3. Asymptotic solutions

The equations of motion that follow from (2.8) are given by

d

du

[

V (T )√
D

u4

4R2
L′

]

=
V (T )√

D
u

5
2 LT 2 (3.1)

d

du

[

V (T )√
D

u
5
2

R2
T ′

]

=
V (T )√

D
u

5
2 L2T +

dV (T )

dT
u4

√
D , (3.2)

where D was defined in (2.9), V (T ) is the inverse cosh potential, and we have set 2πα′ = 1.

The tachyon equation (3.2) has a trivial solution T = 0. In this case the solution to

the L equation (3.1) is L(u) = L∞, corresponding to the parallel D8-D8 configuration.7

This configuration is unstable due to the localized tachyon mode near u = 0. The stable

solution must involve a non-trivial tachyon condensate T (u), which, as we shall see below,

corresponds to a single U-shaped configuration.

We expect the 8-brane and anti-8-brane to connect roughly at the radial position below

which the bi-fundamental field is tachyonic. Let us first expand the fields near this point:

L(u) = (u − u0)
p[l0 + l1(u − u0) + · · · ] (3.3)

T (u) = (u − u0)
q[t0 + t1(u − u0) + · · · ] , (3.4)

where we assume that l0, t0 > 0. To leading order, the L equation (3.1) gives

q = −2 and t0 =

√
π

2R2
p u

3/2
0 . (3.5)

This implies, in particular, that p > 0. In addition, the absence of sources at u = u0 implies

that p < 1, so that L′(u0) → ∞ and the configuration is smooth. The T equation (3.2) is

then also satisfied to leading order. The leading behavior near u0 is then

T (u) ∼ (u − u0)
−2 , L(u) ∼ (u − u0)

p , 0 < p < 1 . (3.6)

This is in accord with the interpretation of the non-trivial solution as the chiral-symmetry-

breaking U-shaped configuration. The brane-antibrane separation vanishes at u = u0, and

the tachyon diverges, i.e. goes to its true vacuum in the potential (2.5).

To compute the gauge theory quantities, in this case the quark mass and condensate,

we should look at the behavior of the solution at large u. This corresponds to the UV limit

of the gauge theory. Strictly speaking, the UV limit is not well-defined in this model, since

it is really a five-dimensional gauge theory. We will therefore always be considering a UV

7Equation (3.1) reduces in this case to the same equation one gets from the single 8-brane action without

the tachyon [11]. There are two solutions in that case corresponding to a straight 8-brane and a U-shaped

8-brane. However the action in our case is doubled since it includes both an 8-brane and an anti-8-brane.

Consequently there are four possible solutions with T = 0, corresponding to either brane or antibrane being

straight or U-shaped. We are interested only in solutions with two asymptotic boundaries, one for the

8-brane and one for the anti-8-brane (or equivalently we require X
(1)
4 (u) and X

(2)
4 (u) to be single-valued).

With T = 0 that leaves only the straight and parallel D8-D8 solution.

– 8 –
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cutoff u∞. In this regime the field T is very massive, so we can consider small fluctuations

away from the trivial solution:

L(u) = L∞ + L̃(u) (3.7)

T (u) = 0 + T̃ (u) , (3.8)

where L̃ ≪ L∞ and T̃ ≪ 1. In this approximation the action is quadratic

S ∝
∫

d4xdu

[

u5/2 +
1

8R2
u11/2(L̃′)2 + u4

(

1

2R2
(T̃ ′)2 +

L2
∞

2
(T̃ )2

)]

. (3.9)

The asymptotic solutions for u ≫ 1 are given by

L̃(u) ≈ CLu−9/2 (3.10)

T̃ (u) ≈ u−2
(

CT e−RL∞u + C ′
T e+RL∞u

)

. (3.11)

These solutions are only valid in a regime of u for which the fluctuations are small. We

therefore have to assume that C ′
T . e−RL∞u∞ , whereas CT and CL can be taken to be

O(1) in the cutoff.

3.1 Quark mass and condensate

The growing and decaying exponentials correspond to the non-normalizable and normal-

izable solutions for T̃ , respectively. We would therefore like to identify the coefficients C ′
T

and CT with the quark mass mq and quark condensate 〈q̄q〉, respectively. Let us verify this

explicitly. In QCD (at zero temperature) the quark condensate is given by the variation of

the energy density with respect to the quark mass

〈q̄q〉 =
δEQCD

δmq

∣

∣

∣

∣

mq=0

. (3.12)

Let us assume that mq is given by the (dimensionless) parameter C ′
T

mq = ΛC ′
T , (3.13)

where Λ is some fixed mass scale. To evaluate (3.12) in the holographic dual we must vary

the asymptotic (Euclidean) 8-brane action (3.9) with respect to the parameter C ′
T of the

solution. The general variation is

δS =

∫

du

[

δL
δT (u)

δT (u) +
δL

δT ′(u)
δT ′(u) +

δL
δL(u)

δL(u) +
δL

δL′(u)
δL′(u)

]

. (3.14)

Using the equations of motion this reduces to

δS =
δL

δT ′(u)
δT (u)

∣

∣

∣

∣

∞

u0

+
δL

δL′(u)
δL(u)

∣

∣

∣

∣

∞

u0

. (3.15)

Focussing on the variation with respect to the tachyon we find

δS = − 2N
R2

u5/2V (T )T ′(u)√
D

δT (u)

∣

∣

∣

∣

∣

∞

u0

. (3.16)
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Only the upper limit contributes, since although both T and T ′ diverge in the lower limit,

the potential V (T ) ∼ exp(−√
πT ) → 0 much faster. Using the large u asymptotic form of

the solution (3.11) we find for a variation with respect to C ′
T :

δS

δC ′
T

= −2N
R

L∞

(

CT − C ′
T e2RL∞u∞

)

, (3.17)

where we have imposed the cutoff u∞. Since C ′
T is identified with the quark mass, we find

that the quark condensate is related to CT as

〈q̄q〉 =
2NL∞

ΛR
CT . (3.18)

4. Numerical solutions

The asymptotic solutions near u = u0 and at large u must connect in the full solution to the

equations of motion (3.1) and (3.2). In this section we present a numerical analysis of these

equations. For convenience we define the dimensionless quantities (recall that 2πα′ = 1)

y ≡ 4R4u, f(y) ≡ 1

4R3
L(u), g(y) ≡

√
2 T (u) . (4.1)

In terms of these the D8-D8 action (2.8) becomes

S = − N
64R14

∫

d4xdy
y4

√

D̃
cosh

(√

π
2 g(y)

) , (4.2)

where

D̃ = y−3 + f ′(y)2 + y−3/2g′(y)2 + y−3/2f(y)2g(y)2 , (4.3)

and the equations of motion become

d

dy

[

y4D̃−1/2f ′(y)

cosh
(√

π
2 g(y)

)

]

=
y5/2D̃−1/2f(y)g(y)2

cosh
(√

π
2 g(y)

) (4.4)

d

dy

[

y5/2D̃−1/2g′(y)

cosh
(√

π
2 g(y)

)

]

=
y5/2D̃−1/2f(y)2g(y)

cosh
(√

π
2 g(y)

) −
√

π

2

tanh
(√

π
2 g(y)

)

cosh
(√

π
2g(y)

) y4D̃ 1
2 . (4.5)

The range for y ∈ [0,∞) will be approximated numerically by the range [0.01, 100].

The solution is fixed by imposing boundary conditions for f(y), g(y), and their deriva-

tives, either at infinity (UV) or at y = 1 (IR), which corresponds roughly to u0. Let’s look

at UV boundary conditions first. Guided by the UV asymptotic form of the solution (3.10)

and (3.11), we impose

f(100) = 1, f ′(100) = 10−10, g(100) = 10−30, g′(100) = −10−30. (4.6)

Figure 3(a) shows the resulting numerical solution for the shape of the 8-brane, and fig-

ure 3(b) shows the tachyon profile for this solution. The tachyon increases as y decreases,

and blows up, i.e. attains its vacuum value, where the 8-brane and anti-8-brane connect.
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Figure 3: (a) The D8-D8 separation. (b) The tachyon profile.
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Figure 4: (a) The shape of the 8-brane, and (b) the profile of the tachyon from the IR.

Now let’s look at IR boundary conditions. Guided by the IR asymptotics (3.6) we

impose the numerical boundary conditions

f(1) = 0.001, f ′(1) = 500, g(1) = 400, g′(1) = −16000 . (4.7)

The solution near the connection point at y = 1 is shown in figure 4. The behavior is

qualitatively the same as with the UV boundary conditions. When we look at larger y,

however, the qualitative behavior changes (figure 5). This is due to the sensitivity of the

numerical solution to the IR boundary conditions (4.7). The exact IR boundary values of

f ′, g and g′ are infinite. As we increase the numerical IR boundary values of f ′, g and g′

the region where the behavior changes moves to larger and larger y.

4.1 A comparison with the AHJK solution

Let us compare this solution with the solution for the single 8-brane action without the

tachyon found in [11]. The latter is just the solution of (4.4) with g(y) = 0:

d

dy

[

y4f ′
AHJK(y)

√

y−3 + f ′
AHJK(y)2

]

= 0 . (4.8)
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Figure 6: The solid line describes f(y) in our tachyonic model. The dashed line describes the

AHJK solution fAHJK(y).

Using the same UV boundary conditions we arrive at the numerical solution presented in

figure 6, where we also present our solution for comparison. The two configurations are

very close in this regime, which is understandable since the correction due to the very

massive field T is small.

We would like to argue that our solution with the non-trivial tachyon profile is, in some

sense, a better approximation to the exact string theory solution. As evidence for this we

will show that the free energy of our solution is smaller than that of the solution of [11],

which we will refer to as the AHJK solution.8 The free energy is given by the Euclidean

action of the solution, which for our solution is

E [f(y), g(y)] =
N

64R14

∫

dy
y4

√

y−3 + f ′(y)2 + y−3/2g′(y)2 + y−3/2f(y)2g(y)2

cosh
(√

π
2 g(y)

) . (4.9)

8Recall also that the U-shaped solution of [11] has a lower free energy than that of the parallel configu-

ration.
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The free energy for the AHJK solution is given by

EAHJK[fAHJK(y)] =
N

64R14

∫

dy y4
√

y−3 + f ′
AHJK(y)2 . (4.10)

By splitting the integration over y to a UV part and an IR part, we can estimate the

free energy of our tachyonic solution and the AHJK solution. In the IR region, the free

energy of the tachyonic solution E IR is strongly suppressed by the exponentially vanishing

factor cosh−1(
√

π/2g(y)), which comes from the tachyon potential. So E IR is obviously

much smaller than the IR part of the AHJK free energy E IR
AHJK. On the other hand, in the

UV region, we shall compare E and EAHJK numerically. From figure 6(b), and using the

numerical solutions of f, g, fAHJK, we calculate9

64R14

N (EUV − EUV
AHJK)

=

∫ 100

20.7859
dy

y4
√

y−3+f ′2 + y−3/2g′2+y−3/2f2g2

cosh
(√

π
2g

) −
∫ 100

20.3596
dy y4

√

y−3+f ′
AHJK

2

= −818.417 < 0, (4.11)

that is to say, EUV < EUV
AHJK. Combining the results in the IR and UV regions, we see that

E < EAHJK , (4.12)

so our tachyonic solution appears to be more favorable than the AHJK solution.

5. The meson spectrum

We now turn to the analysis of the spectrum in the tachyon U-shaped background. The

fluctuations of T,L and the gauge fields on the 8-brane and anti-8-brane correspond to var-

ious mesons, including scalars, pseudo-scalars, vectors and axial-vectors. We are interested

mainly in the lowest pseudo-scalar modes (the pions). In particular, we would like to see

how they acquire mass when the quarks are massive. For completeness we also set up the

eigenvalue problems for the other mesons, but we leave the (numerical) analysis for future

work.

5.1 Scalar fields

Let’s start with the scalar fields L and T . We expand around the classical solution

T (xµ, u) = T (u) + t(xµ, u) (5.1)

L(xµ, u) = L(u) + ℓ(xµ, u) , (5.2)

9The lower bounds of the integration intervals depend on the capacity of our computer.
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where t(xµ, u) and ℓ(xµ, u) are real scalar fields.10 Expanding the 8-brane-anti-8-brane

action to quadratic order gives

S[t, ℓ] = −N
∫

d4xdu

[

I1(∂µt)2 + I2(∂µℓ)2 + I3∂µt∂µℓ + I4(t
′)2 + I5t

2 + I6tt
′

+I7(ℓ
′)2 + I8ℓ

2 + I9ℓℓ
′ + I10t

′ℓ′ + I11t
′ℓ + I12tℓ

′ + I13tℓ

]

, (5.3)

where the coefficients are given by

I1 :=
V (T )√

D

(

u− 1
2 +

u
5
2 (L′)2

4R2(1 + u
3
2 L2T 2)

)

,

I2 :=
V (T )√

D

(

u

4
+

u
5
2 (T ′)2

4R2(1 + u
3
2 L2T 2)

)

,

I3 := −V (T )√
D

u
5
2 L′T ′

2R2(1 + u
3
2 L2T 2)

,

I4 :=
V (T )√

D

(

u
5
2

R2
− u(T ′)2

R4D

)

,

I5 := −V (T )uL4T 2

D 3
2

+
V (T )u

5
2 L2

√
D

+
dV (T )

dT

2u
5
2 L2T√
D

+
d2V (T )

dT 2
u4

√
D,

I6 := −2V (T )uL2TT ′

R2D 3
2

+
dV (T )

dT

2u
5
2 T ′

R2
√
D

,

I7 :=
V (T )u4

4R2
√
D

− V (T )u4(L′)2

16R4D 3
2

,

I8 :=
V (T )u

5
2 T 2

√
D

− V (T )uL2T 4

D 3
2

,

I9 := −V (T )u
5
2 LL′T 2

2R2D 3
2

,

I10 := −V (T )u
5
2 L′T ′

2R4D 3
2

,

I11 := −2V (T )uLT 2T ′

R2D 3
2

, I12 := −V (T )u
5
2 L2L′T

2R2D 3
2

+
dV (T )

dT

u4L′

2R2
√
D

,

I13 := −2V (T )uL3T 3

RD 3
2

+
4V (T )u

5
2 LT√

D
+

dV (T )

dT

2u
5
2 LT 2

√
D

.

The four-dimensional mass matrix will get contributions from all the quadratic terms in

t, t′, ℓ, ℓ′.

10In general there is also a pseudo-scalar fluctuation of the phase of the tachyon θ(xµ, u), but we are

working in unitary gauge where θ = 0.
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5.2 Gauge fields

Now consider the gauge fields A(1) and A(2). We will use the symmetric and anti-symmetric

combinations

A±(xµ, u) ≡ 1

2
(A(1)(xµ, u) ± A(2)(xµ, u)) , (5.4)

and consider only the µ and u components. The former will give rise to vector (A+
µ )

and axial-vector (A−
µ ) mesons, and the latter to scalar and pseudo-scalar mesons in four

dimensions. Let us also further fix the gauge by setting

A+
u = 0 . (5.5)

Expanding the action to quadratic order in the gauge fields then gives

S[A+, A−] = −N
∫

d4xduuV (T )
√
D

[

1

2
|F+

µν |2+
1

2
|F−

µν |2 +
1+u

3
2 T 2L2

R2D
(

|A+′
µ |2+|F−

µu|2
)

+
4u

3
2 T 2

1+u
3
2 T 2L2

(

1+
T 2L2(L′)2

4u
3
4 R2D

)

(A−
µ )2+

4u
3
2 T 2

R2D (A−
u )2+

2u
3
2 T 2LL′

R2D F−
µuA−µ

]

.

(5.6)

5.2.1 The A+ sector

The action in the symmetric (vector) sector is given by

S[A+] = −N
∫

d4xduuV (T )
√
D

[

1

2
|F+

µν |2+
1+u

3
2 T 2L2

R2D |A+′
µ |2

]

. (5.7)

This sector is similar to the gauge field in the single 8-brane case in [1]. We expand the

gauge field A+
µ in radial modes ψn(u)

A+
µ (xµ, u) =

∑

n

a+(n)
µ (xµ)ψn(u) , (5.8)

that satsify the eigenvalue equation

− 1

V (T )u
√
D

∂u

(

V (T )
u + u

5
2 T 2L2

R2
√
D

ψ′
n

)

= (m+
n )2ψn , (5.9)

and the normalization condition

N
∫

duuV (T )
√
Dψmψn =

1

2
δmn . (5.10)

The four-dimensional action in this sector is then

S[a+(n)
µ ] = −

∫

d4x
∞

∑

n=1

(

1

4
f+(n)

µν f+(n)µν +
1

2
(m+

n )2a+(n)
µ a+(n)µ

)

, (5.11)

where f
+(n)
µν ≡ ∂µa

+(n)
ν − ∂νa

+(n)
µ .
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The zero mode ψ0, with m+
0 = 0, is special. The eigenvalue equation (5.9) gives

ψ0(u) ∼
∫ u

dv
R2

√
D

V (T (v))(v + v
5
2 T 2L2)

. (5.12)

In the UV asymptotic region this becomes

ψ0 ∼
∫ u

∞
dv v−21/2 , (5.13)

so ψ0(u) is UV-normalizable. On the other hand, in the IR asymptotic region we get

ψ0(u) ∼
∫ u

u0

dv exp

√
πt0

(v − u0)2
×















v−7/4(v − u0)
−3 (p > 2)

(v−7/4 + ℓ2
0t

2
0v

−1/4)(v − u0)
−3 (p = 2)

ℓ2
0t

2
0v

−1/4(v − u0)
2p−7 . (p < 2)

(5.14)

The exponential divergence of the integrand as v → u0 implies that ψ0(u) is non-

normalizable in the IR. We therefore have to exclude this mode from the spectrum. The

spectrum of vectors is therefore purely massive. Note that the exponential divergence is

due to the tachyon.

5.2.2 The A− sector

The action in the anti-symmetric sector is given by

S[A−] = −N
∫

d4xduuV (T )
√
D

[

1

2
|F−

µν |2+B1|F−
µu|2+B2|A−

µ |2+B3(A
−
u )2+B4F

−
µuA−µ

]

,

(5.15)

where the coefficients are given by

B1 =
1+u

3
2 T 2L2

R2D , B2 =
4u

3
2 T 2

1+u
3
2 T 2L2

(

1 +
T 2L2(L′)2

4u
3
4 R2D

)

, B3 =
4u

3
2 T 2

R2D , B4 =
2u

3
2 T 2LL′

R2D .

(5.16)

We decompose the four-dimensional part of the gauge field A−
µ into a longitudinal compo-

nent A
‖
µ and transverse components A⊥

µ (where ∂µA⊥µ = 0), and expand all the components

in radial modes

A⊥
µ (xµ, u) =

∑

n

a−(n)
µ (xµ)ξ⊥n (u), (5.17)

A‖
µ(xµ, u) =

∑

n

∂µω(n)(xµ)ξ‖n(u), (5.18)

A−
u (xµ, u) =

∑

n

ω(n)(xµ)ζn(u) . (5.19)

These modes satisfy the eigenvalue equations

∂u

[

uV (T )
√
D

(

B1ξ
⊥′
n − 1

2
B4ξ

⊥
n

)]

= uV (T )
√
D

(

B2ξ
⊥
n − 1

2
B4ξ

⊥′
n − (m−

n )2ξ⊥n

)

(5.20)

B3ζn = M2
n

[

B1(ζn − ξ‖′n ) +
1

2
B4ξ

‖
n

]

, (5.21)
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and an additional equation relating the longitudinal and pseudo-scalar modes

−∂u

[

uV (T )
√
D

(

B1(ζn − ξ‖′n ) +
1

2
B4ξ

‖
n

)]

= uV (T )
√
D

(

B2ξ
‖
n +

1

2
B4(ζn − ξ‖′n )

)

, (5.22)

and the normalization conditions are given by

N
∫ ∞

u0

duuV (T )
√
Dξ⊥mξ⊥n =

1

2
δmn , (5.23)

N
∫ ∞

u0

duuV (T )
√
D

[

B1(ζm − ξ‖′m)(ζn − ξ‖′n ) + B2ξ
‖
mξ‖n

+
1

2
B4

{

(ζm − ξ‖′m)ξ‖n + ξ‖m(ζn − ξ‖′n )
}

]

=
1

2
δmn. (5.24)

The four dimensional action in this sector then becomes

S[a−(n)
µ , ω(n)] = −1

2

∫

d4x

[

∑

n

(

1

2
f−(n)

µν f−(n)µν + (m−
n )2a−(n)

µ a−(n)µ

)

+
∑

n

(

∂µω(n)∂µω(n) + M2
n(ω(n))2

)

]

, (5.25)

where f
−(n)
µν ≡ ∂µa

−(n)
ν − ∂νa

−(n)
µ .

Using (5.20), (5.21), (5.22), (5.23) and (5.24), we can express the masses m−
n and Mn

as

(m−
n )2 = 2N

∫

duuV (T )
√
D

[

B1(∂uξ⊥n )2 + B2(ξ
⊥
n )2 − B4ξ

⊥
n ∂uξ⊥n

]

, (5.26)

(Mn)2 = 2N
∫

duuV (T )
√
DB3(ζn)2. (5.27)

The spectrum in this sector consists of massive axial-vectors a
−(n)
µ and massive pseudo-

scalars ω(n). The pion is identified with the lowest pseudo-scalar mode ω(0). Eq. (5.27)

shows that the pion acquires mass due to the non-trivial tachyon background. Below we

will estimate this mass for the case of a small quark mass.

5.3 The pion mass

We will begin by establishing that the pion is massless when the quark is massless. In this

case the large u behavior of the tachyon and the 8-brane-anti-8-brane separation is given

by

T (u) ≈ CT u−2e−RL∞u , L(u) ≈ L∞ + CLu−9/2 , (5.28)

where CT is related to the chiral condensate. For M0 = 0 the solution to eq. (5.21) is

ζ0(u) = 0 . (5.29)

The large u asymptotic form of ξ
‖
0(u) can then be read off from the asymptotic behavior

of eq. (5.22):

ξ
‖
0(u) ≈ a + bu−3/2 , (5.30)

– 17 –



J
H
E
P
1
2
(
2
0
0
7
)
0
3
7

where a and b are constants which we will determine shortly. It can easily be checked

that this solution is UV normalizable under the condition (5.24), and therefore that it

corresponds to a massless pion.

Now turn on a small quark mass C ′
T . The condition for the validity of the corresponding

tachyon solution

T (u) ≈ u−2
(

CT e−RL∞u + C ′
T eRL∞u

)

, (5.31)

is C ′
T . e−RL∞u∞ . We can therefore treat the quark mass as a perturbation of the massless

solution we found above. To leading order in C ′
T , and at large u, equation (5.21) gives

ζ0(u) ≈ −3bM2
0

8

(

C ′
T eRL∞u + CT e−RL∞u

)−2
, (5.32)

where M2
0 = O(C ′

T ). We have kept the C ′
T term from the asymptotic solution for the

tachyon since it comes with a growing exponential. We can now use (5.27) to express

the pion mass M0 in terms of the parameters CT and C ′
T . Since the integral in (5.27) is

dominated by large u due to the presence of the tachyon potential, we get

M−2
0 ≈ 9b2N

8R2

∫ u∞

u1

du
(

C ′
T eRL∞u + CT e−RL∞u

)2 , (5.33)

where lower limit of the integral satisfies 1 ≪ u1 ≪ u∞. Under the condition that C ′
T .

e−RL∞u∞ , and assuming that CT ∼ O(1), this gives

M−2
0 ≈ 9b2N

16R3L∞C ′
T CT

. (5.34)

Using (3.13) and (3.18), and inverting we get

M2
0 ≈ 8R4

9N 2b2
mq〈q̄q〉 . (5.35)

Let us now compute the constants a and b that appear in the longitudinal zero

mode (5.30) for zero quark mass. In principle, these constants are fixed by the bound-

ary conditions and the normalization condition (5.24). However the latter requires more

knowledge than we have about the form of the solution at finite u. Instead, what we will

show is that these constants are related to the gauge theory parameter fπ, the so-called

pion decay constant. To see how, recall that in QCD the pion decay constant can be

extracted from the two point function of the axial vector current in the massless quark

limit

f2
π = ΠA(0) =

∫

d4x 〈Jµ
A(x)JAµ(0)〉 . (5.36)

Using the usual holographic dictionary, we evaluate this by varying the action of the solution

twice with respect to the boundary value of the dual field A⊥
µ . Fourier-transforming in

spacetime, the part of the action (5.15) that depends on this field becomes

S[A⊥] = N
∫

d4p

(2π)2
duuV (T )

√
D

[

B1|A⊥′
µ |2 + (p2 + B2)|A⊥

µ |2 −B4A
⊥′
µ A⊥µ

]

, (5.37)
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where the coefficients were defined in (5.16). The equation of motion reads

∂u

[

uV (T )
√
D

(

B1A
⊥′
µ − 1

2
B4A

⊥
µ

)]

= uV (T )
√
D

(

(p2 + B2)A
⊥
µ − 1

2
B4A

⊥′
µ

)

. (5.38)

Evaluating the action on the equation of motion then gives

S[A⊥] = N
∫

d4p

(2π)2
du

d

du

[

uV (T )
√
D

(

B1A
⊥′
µ A⊥µ − 1

2
B4|A⊥

µ |2
)]

= N
∫

d4p

(2π)2
uV (T )

√
D

(

B1A
⊥′
µ A⊥µ − 1

2
B4|A⊥

µ |2
)

∣

∣

∣

∣

u=u∞

. (5.39)

The IR boundary u = u0 doesn’t contribute since the tachyon potential V (T ) goes to

zero exponentially. Consider the zero mode A⊥
µ (pµ, u) = ξ⊥0 (u)a

−(0)
µ (pµ), and impose the

boundary condition ξ⊥0 (u∞) = 1. The pion decay constant is evaluated by varying with

respect to a
−(0)
µ and imposing p2 = 0:

f2
π = NuV (T )

√
D

(

B1ξ
⊥
0 (u)ξ⊥′

0 (u) − 1

2
B4ξ

⊥
0 (u)2

) ∣

∣

∣

∣

u=u∞

. (5.40)

To relate this to the longitudinal zero mode we note that the equation for ξ⊥0 (u) which

follows from (5.38) at p2 = 0 is precisely the same as the equation for ξ
‖
0(u) (5.22) with

ζ0(u) = 0. This implies that the two zero modes are proportional to each other. The

proportionality factor can be determined from the normalization condition for ξ
‖
0(u) (5.24),

which when combined with (5.22) gives

1

2
= NuV (T )

√
D

(

B1ξ
‖
0(u)ξ

‖′
0 (u) − 1

2
B4ξ

‖
0(u)2

)

∣

∣

∣

∣

∣

u=u∞

. (5.41)

Comparing with (5.40) we see that ξ⊥0 (u) =
√

2fπξ
‖
0(u). The boundary condition on the

longitudinal zero-mode is therefore ξ
‖
0(u∞) = 1/(

√
2fπ), and the condition (5.41) then fixes

the other constant:

ξ
‖
0(u) ≈ 1√

2fπ

−
√

2fπR2

3N u−3/2 . (5.42)

We finally get

M2
0 ≈ 4mq〈q̄q〉

f2
π

, (5.43)

which up to a factor of two reproduces the GOR relation.

6. Conclusions

The Sakai-Sugimoto model provides a holographic description of a gauge theory that is close

to large Nc QCD with massless quarks. The most compelling feature of this model is that

it exhibits spontaneous chiral symmetry breaking in a simple geometrical way. We have
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extended this model by adding the flavor bi-fundamental scalar field corresponding to the

open strings between the 8-branes and anti-8-branes. This field is dual to the operator q̄q,

and therefore describes both the quark mass deformation, as well as the chiral-symmetry-

breaking quark condensate.

Our analysis was carried out in the non-compact AHJK model, which is really dual

to the NJL model. However, since the UV behavior in the compact and non-compact

models is identical, our results for the quark mass, quark condensate, and GOR relation

hold in the compact Sakai-Sugimoto model as well. The IR behavior of the solution will

be quantitatively different, though qualitatively similar.

In the non-compact model there exists also a parallel 8-brane-anti-8-brane configura-

tion in which the chiral symmetry is unbroken. In this configuration the bi-fundamental

field is tachyonic near the origin, so the configuration is locally unstable. The stable config-

uration is the connected, U-shaped configuration in which the chiral symmetry is broken.

The same two configurations exist in the Sakai-Sugimoto (compact) model at high temper-

ature. It would be interesting to study the effect of the bi-fundamental scalar in that case as

well. In particular if the tachyonic mode becomes massless at some temperature, it might

indicate a second-order (rather than first-order) phase transition to a chiral-symmetric

phase.

Far from the origin the bi-fundamental scalar field is massive, but it still has an impor-

tant role in the holographic duality. The 8-brane-anti-8-brane theory with this field exhibits

a U-shaped 8-brane solution with a non-trivial profile for the bi-fundamental field. At large

distance (the UV of the gauge theory) the bi-fundamental field has a non-normalizable ex-

ponentially growing component, and a normalizable exponentially decreasing component.

We showed that the former is related to the quark mass, and that the latter is related to

the quark condensate. We have also found a numerical solution in the normalizable case,

and compared it to the solution of the model without the bi-fundamental field. We showed

that including this field lowers the free energy of the solution.

Lastly, we began an analysis of the fluctuations of the 8-brane and anti-8-brane world-

volume fields, including the bi-fundamental scalar, and the adjoint scalar and gauge fields.

These correspond to the various mesons. In particular the lowest mode of the u-component

of the antisymmetric combination of the gauge fields describes the pseudo-scalar pion. We

evaluated the mass of this mode in terms of the asymptotic behavior of the bi-fundamental

field, and showed that it satisfies the GOR relation. In other words the pion mass is pro-

portional to the product of the quark mass and the quark condensate. The rest of the

meson spectrum should be analyzed numerically.

There is an interesting question regarding the bi-fundamental field. In the action (2.1)

the field T corresponds to a straight string along x4. However, as was shown in [11], the

open string between the 8-brane and anti-8-brane curves into a U-shape. It is not immedi-

ately clear to us how to incorporate this effect into the action. It would be interesting to

study to what extent this affects the solution with T .

Another interesting open question is the spectrum of fluctuations of the bi-fundamental

scalar field T . In particular the spectrum of fluctuations around the parallel and U-shaped

solutions with T = 0 will determine their (in)stability.
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